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Fig. 5. Normalized propagation constant for fundamental and higher
order modes in open microstrip (@ Van de Capelle and Lypaert [12],
[] Getsinger [14]).

V. CONCLUSIONS

A continuous-spectrum method has been used in conjunction
with the method of moments to treat the time-harmonic solution
of covered and uncovered microstrips. Both longitudinal and
transverse currents were considered in the analysis. The propaga-
tion constants for fundamental and higher order modes in open
microstrip were calculated. In each case the results are in good
agreement with available theoretical and experimental data. The
results are accurate to within 4 percent.
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New

General Noise Analysis for Bias- and RF-Voltage-Dependent
Traunsferred-Electron Devices

J. T. PATTERSON, MEMBER, IEEE

Abstract—The general AM and FM noise spectrum analysis of Sweet
for transferred-electron devices is extended to include the variation of
device admittance with both bias- and RF-voltage amplitudes. This is
important because recent investigations by the author suggest that there
are significant variations of device admittance with both parameters.
Also the expressions for the AM and FM noise spectra are formulated
in terms of the more basic quantities such as stored charge, modulation
sensitivities, and incremental admittance.

INTRODUCTION

The lumped-circuit analysis of noise in self-excited oscillators
has received considerable attention. Edson [1], Mullen [2], and
van der Pol [3] wrote basic papers on this subject. As different
self-oscillating devices have been developed, their noise proper-
ties have been studied in detail. Lax [4] underscored this in-
dividuality of self-excited oscillators when he observed that ““the
noise mixes with the signal in a complex fashion that is quite
different from ordinary nonlinear systems. ... It is not satis-
factory to represent the spectrum as a delta function signal plus
a background. The noise will spread the delta function spectrum
into a finite width.” This complex mixing is dependent both on
the device properties and on the device environment. Hence,
it is necessary to combine an oscillator device model with an
RF-circuit model to completely study oscillator noise properties.
This short paper extends the theoretical groundwork for the
general noise analysis of transferred-electron (TE) devices.
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The individuality of self-excited oscillators underscores the
need to supplement the general publications on nonlinear solid-
state-device noise properties [5], [6]. IMPATT diodes, which are
basically high-impedance devices, are best treated in equivalent-
series RF circuits and have been studied extensively [7]-[13].
More recently, attention has been directed toward TE-device
noise properties [14], [15], which are best studied in equivalent
parallel RF circuits since TE devices are basicaily low-impedance
oscillators. This short paper extends the parallel-circuit noise
analysis of Sweet [14] to include the variation of TE-device
admittance with both RF and bias voltages. Recent studies by
the author show that both parameters are important.

Not only is Sweet’s model an oversimplification for some
important cases, but also his assumption of a capacitance to
represent the device susceptance leads to an ambiguity in choos-
ing between average and incremental capacitance when in fact
the primary reactive quantity obtained from the device model
chosen is susceptance.

The interpretation of the capacitance is conveniently bypassed
when the noise theory is formulated using susceptance as in the
following.

GENERAL NOISE ANALYSIS

General expressions are derived for the AM and FM oscillator
noise of the circuit in Fig. 1 assuming that lumped RF and video
or low-frequency noise sources are known. Fig. 1 includes two
sources of noise. One is a narrow-band RF source i(¢) and the
other arises from fluctuations A¥y(¢) in the bias voltage V. They
are assumed to be described as

i(t) = —iy(r) sin (et + @) + i,(r) cos (wer + @) )]
and
Va(t) = Vo + AWo(2) )

where i;(t), i,(t), and AVy(¢) are zero-mean random processes
with known spectra, wg is the oscillator frequency, ¢ is the
oscillator phase, and ¥, is the dc bias voltage. Also the circuit
voltage V' (¢) is assumed to be

V(t) = Vap(t) cos (wgt + ¢) 3)

where Vip(t) = V, + AVi(¢) is a slowly varying amplitude with
average value V] and fluctuation AV;(¢). Thus i{(¢) and i,(¢) are
the quadrature and in-phase RF-noise components, respectively.
The statistics of the random processes AV;(¢) and ¢ determine
the AM- and FM-noise spectra and will be expressed in terms
of the statistics of i;, i,, and AV].

The Kirchhoff current equation for the circuit voltage is

i(t) = -iGdVRF Ccos (Q)ot + ¢) - BVRF Sin (wot + ¢)

+ (Cﬁ + Gy + G + l—fdt) Vir €0s (0ot + ¢).
dt L
G

The sign of the device susceptance term is negative because,
physically, the device has a capacitive (i.e., positive) susceptance.

The excitations AV} and i are assumed small so that they may
be treated as leading to perturbations about the noiseless, steady-
state operating point. At this operating point the time dependence
of the slowly varying terms drops out and, since the quadrature
components in (4) must separately vanish, ¥, and V; are deter-
mined from

Go + GL — G,(V,Vp) = 0 ®)
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Fig. 1. Nonlinear device in a parallel circuit. (a) Parallel oscillator circuit.
(b) Parallel nonlinear-device model.
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Perturbations about the operating point {V;,V,} are expressed
in the time dependence of A¥V; and ¢ through the sources iy, i,,
and AV,. Keeping only the first-order terms in (4) and then
multiplying by the operator 2/T) §¥*7T dt cos (wot + ¢) for
T = 2rjw, gives the in-phase constraint

(1) = —[(0y,Gp AV + (By,Go) AV 1Vy
1
+ (c w—ﬁ) AV (D)

where the prime denotes differentiation with respect to time and
. denotes differentiation with respect to the variable x. Similarly,
applying the operator (2/T) [i*T dt sin (wot + ¢) gives the
quadrature phase constraint

—iy(t) = — [0y, B) AV, + (v, B) AV 1V, + AVY)
L CHT + AV - 2+ AV, ®
wo“L
In (7) and (8) AV,, i, and i, are the sources while AV, and ¢
are the responses to those sources. Inspection reveals that (7)
is an independent amplitude constraint for AV; and (8) is a
coupled constraint (to AV;) for ¢. This coupling is absent in
Sweet’s formulation and hence the expression for FM noise in
the present development has an additional term depending on
the in-phase noise source which Sweet’s development lacks al-
together, and has a slightly different video-noise term from
Sweet’s. The quadrature-noise terms in the FM spectrum and
the AM spectrum are similar to those in Sweet’s analysis. The
separation of the in-phase and quadrature-phase constraints into
oscillator-amplitude and oscillator-phase constraints, respectively,
is familiar in van der Pol-type [3] problems. The previous inclu-
sion of RF-voltage dependence leads to a coupling between the
amplitude and phase constraints which is not present in the
van der Pol analysis. That is to say, the Sweet and van der Pol
analyses are isomorphic and differ from the present analysis in
similar ways.

Since (7) and (8) are linear, superposition applies. The first
can be solved for the spectrum S,y (w,,) of AV;. Since i, i,, and
AV, are assumed uncorrelated, the spectrum of A¥V; will be the
sum of the individual contributions due to AV, and i,. Sup,(©0,.)/
V,2 is just the oscillator AM-noise spectrum Sam(®m).

The theory of random processes applied to linear systems [16],
[17] shows that for a random-process input x(t) to a linear
system with response H(w), which gives the output random
process Y (¢), the input and output spectra are related by
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Sy(®) = |H(@)]*Sx(). ®

Using this result with the amplitude constraint (7), gives the
AM-noise spectrum as

1
SAM(wm) = -1—7_2 SAVl(a)m) (10)

1

and

2 Sav (0w
S - i_ AVo\%m
w0 = T3 T3 (oo
2//

ViGre) 1 + (0a/®1)?

where the terms used in this expression are summarized following
(13). The coupling term in (8) involving AV, in the phase con-
straint can now be treated as a source term so that the individual
spectral components of the phase can simply be added to get the
phase spectrum.

At this point it is convenient to observe that the spectrum
of the phase ¢ is not the quantity actually measured experi-
mentally. Normally, the spectrum of the derivative ¢’ is measured.
This is the FM-noise spectrum. The phase constraint then readily
gives the FM spectrum as

Sem(@Om) = Sp(Om) (12)
and
2
eV (” < c%)
S, = (g — &)>* [ZRE — 1 S
@) = (1 — &) (q) S| Sanlon
Sil(wm) (a)O‘L-RF/qRF)2 S, ) 13
* dre’ " 1 + (@n/o,)? ulom) (13

where the following terms have been used:

n = & Gyldy,Gy RF-to-video conductance
modulation sensitivity;
& = Oy Bloy B RF-to-video susceptance
modulation sensitivity;
trr = (1/wo)dy, B/0y,G;  RF relaxation time;
Gy = V10y Gy RF incremental conductance;
By = V10y B RF incremental susceptance;
grr = V1[C + 1/(wy*L)] stored charge per RF cycle;
@, = ViGpe/are noise rolloff frequency;
Oy the frequency deviation from «,.

Commonly, the FM spectrum is rewritten in such a manner
as to introduce a Q factor (e.g., Kurokawa [5] and Sweet [14]).
Since Q factors are frequently measured parameters, those
formulations are convenient. However, measured Q factors are
frequently ambiguous and subject to interpretation. Moreover,
the suggested parameter variations are sometimes incorrect (e.g.,
'variation of the RF component of FM noise with load conduc-
tance). Thus the FM spectrum in (13) has been expressed in
terms of the more basic quantity, stored charge.

The AM spectrum is seen to have two components: one due to
video noise and the other due to the in-phase quadrature RF-
noise component. The FM spectrum depends on the video noise
and both quadrature RF-noise components. By proper choice
of the conductance- and susceptance-modulation sensitivities the
video components of AM and FM noise can be minimized. The
AM video component is minimized by minimizing the con-
ductance-modulation sensitivity # while the FM video component
for constant susceptance-modulation sensitivity & is minimized
by minimizing the expression (7 — £)%{1 + [¢/(n — &) (@u/w,)?}
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from (13). In the limit of the frequency difference w,, from the
carrier approaching zero, the FM-noise video component is
minimized by approximately equating #, the conductance-

modulation sensitivity, to &, the susceptance-modulation sensi-

tivity., Approximately equating »# to € is emphasized because
when#n = ¢& the preceding expression becomes &2(w,,>/w,2) which
is not the minimum. Both the AM and FM video components
are small when both # and & are very small. In terms of device
admittance, # and £ are small when admittance variations with
RF voltage are large and when admittance variations with bias
voltage are small.

The FM video component is also dependent on the stored
charge in the RF circuit. Increasing that stored charge decreases
the FM noise.

Since the video component of noise typically dominates TE
oscillator noise below 100 kHz from the carrier, the preceding
variations of AM and FM spectra are most important for
applications in this frequency range. Device fabrication for
lowest noise performance should not only be directed toward
improved processing techniques which reduce crystal imperfec-
tions and surface traps which lead to high 1/f noise, but also
toward tailoring the device admittance curves so that at the
desired operating point for a particular application the admit-
tance RF-voltage variation is large and bias-voltage variation
is small.

The variations of RF components of AM and FM noise
describe the dependence of TE oscillator noise in the limit of
negligible video or 1/ fnoise. This would be the case if fabrication
techniques were refined sufficiently to virtually eliminate 1/f
noise or if the device RF noise rose such as happens when a
device is on the verge of changing modes. Further, the noise
properties of devices such as IMPATT’s whose oscillator noise
is mainly due to RF-noise sources would be described by the
RF components.

The variations of the RF components are simpler than the
variations of the video-noise components and the AM- and
FM-RF-noise components are uncoupled. As with the video
component of FM noise, the RF components of FM noise
decrease with increasing RF circuit stored charge. For the
quadrature-phase RF component, stored charge is the only
parameter dependence. The in-phase RF component of FM is
also proportional to the RF relaxation time 7gy. This means that
the in-phase component is reduced by decreasing the RF-voltage
slope of susceptance and increasing the RF-voltage slope of
conductance. However, for wyrgy « 1 the quadrature-phase
component of FM dominates and further optimization of the
slopes has little effect on the FM spectrum.

The RF component of AM noise is proportional to the
reciprocal square of the conductance RF-voltage slope, and thus
increasing this slope decreases the AM spectrum due to RF
noise.

Reviewing the results of Sweet, his expression for the AM
spectrum is the same as (11) indicating that introducing an
RF-voltage dependence in the nonlinear device does not alter
its AM-noise spectrum. Also his expression for the FM spectrum
reveals that introducing an RF-voltage dependence leads to a
correlation between the RF component of AM and FM noise
because it causes noise-quadrature components to contribute
to the FM noise. Further, the video component of FM noise is
altered by the RF-voltage dependence.

CONCLUSIONS

Introducing both RF- and bias-voltage dependences in the
admittance of the nonlinear TE device gives the same AM-noise
spectrumn as the case of a device admittance dependent only on
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bias voltage, but leads to a correlation between the RF com-
ponent of AM and FM noise. This is because both quadrature
components of RF noise contribute to FM noise when the device
admittance is RF and bias voltage dependent. Further, the video
component of FM noise is altered by the RF-voltage dependence.

The results indicate that device fabrication for lowest noise
performance should not only be directed toward improved
processing techniques which reduce crystal imperfections and
surface traps, both of which lead to high 1/f noise, but also
toward tailoring the device admittance curves so that at the
desired operating point for a particular application the RF-
voltage variation cf the admlttance is large and the bias-voltage
variation is small.
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On Some Integral Relationships for Commensurate
Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract—Several integral relationships are presented for commen-
surate transmission-line networks. The integrals focus onm the fact that
Z(1) for such networks, where Z(S) is the input immittance of the network,
is associated with a real or redundant unit element prefacing the network.
Three bandwidth restrictions are derived. Some applications of the integral
relationships are presented.,
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For commensurate transmission-line networks it is convenient
to use Richards [1] variable S, where

S tanh {rs/2} = Y +iQ;

Tt 21/v, the round-trip delay for the shortest commensurate
length line;

1 length of the shortest commensurate length line;

v velocity of propagation;

s o + iw, the complex frequency variable of lumped-clement
networks.

Richards proved that driving-point immittances (impedances or
admittances) Z(S) are rational functions of .S and are positive
real. In this short paper we consider several integral relationships
for general immittance functions Z(.S) expressible in the form

Z(S) = F(S) + M(S)
F(S) = Foster preamble
A_° L 24_.*§
= 4,°8 + 221 4 oot Meudil
! s k2=:1 52 + Q2
2 . n
M(S) — ag + als + azs + + a,,,S ,
bo + b1S + b2S2 + M + bmSm

n=morm— 1.

Also, at infinity, M (S) can be expanded into

lim M(S) = m, +—-—- +

4o,
S— S S2

The first integral, and one of primary interest, is

Z(S)
where C is the Bromwich [2] contour consisting of the > =

axis, and the infinite semicircle enclosing the RHP. By Cauchy’s
theorem, (1) is

. ~i® Z(iQ)i dQ M2 Z(S) dS
miz(l) = f vyl fD LSS
too -7

Details of evaluating the RHS of the previous equation are
given in the Appendix. The final result is

A
=11 + Q2
2)
Z(iQ). On the “‘real-frequency axis”

L
z()y = 2 M+A°°+A_1+2}_‘
7[092+1

where R(Q2) + iX(Q) =
S =iQ=itan 8

where 6 = wl/v is the electrical length. Substitution into (2)
results in
Z(1) =3f”/21<(0)d0+ AR 4 A0 42 Y A
7 Jo =11+ Q2
(3)

The integral on the RHS of (3) is the average of R(6) over =/2 rad.
Hence, transposing, (3) states

k

— A_% - 4~
1+Qk ! !

avg Z(I) -2 Z (4)

Thus, the average value of the real part of Z(S) over =/2 rad
equals Z(1) less the weighted values of the residues of its Foster
preamble. Equations (2)—(4) are particularly useful forms since



